If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-80x-9600=0
a = 5; b = -80; c = -9600;
Δ = b2-4ac
Δ = -802-4·5·(-9600)
Δ = 198400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{198400}=\sqrt{6400*31}=\sqrt{6400}*\sqrt{31}=80\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-80\sqrt{31}}{2*5}=\frac{80-80\sqrt{31}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+80\sqrt{31}}{2*5}=\frac{80+80\sqrt{31}}{10} $
| 6(t-3)=2-(9-2t) | | r2+4r-7=0 | | 14m-8=20 | | x2+15x=−56 | | 4-(x+2)=-2x+1 | | -2x+6x=6 | | -7x+8(1/3)=-5 | | x=39-12 | | (8x-7)^2=0 | | -1/2(8r+6)+7(7r+4)=-19 | | -1/2(8r+6)+7(7r+4=-19 | | 4r+10=2(r+5) | | u+1=19 | | 2k+6k-6=2(4k-3) | | 13/5=t−13/6 | | 19=14(c+3)+3 | | 6(2m+3)=13m+19 | | -15x^2+44x-32=0 | | -13=r/7+8 | | 4x+8=7x+3-3x | | 9+4*5/x=2 | | 20x=4=5x | | 0.602=j4.75 | | 4(x−7)=3(9-1/3x) | | 7n-1/8=6 | | 10x+4(3x)=0 | | `20=-4(3a-2) | | (x-5)^(3/2)=8 | | -2x-3=3x-5 | | -11r=-15-10r | | 4^5x=16 | | 8x+6x=750 |